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Abstract

The perfectly matched layer (PML) has become a widespread technique for preventing reflections from far field

boundaries for wave propagation problems in both the time dependent and frequency domains. We develop a discre-

tization to solve the Helmholtz equation in an infinite two-dimensional strip. We solve the interior equation using high-

order finite differences schemes. The combined Helmholtz-PML problem is then analyzed for the parameters that give

the best performance. We show that the use of local high-order methods in the physical domain coupled with a specific

second order approximation in the PML yields global high-order accuracy in the physical domain. We discuss the im-

pact of the parameters on the effectiveness of the PML. Numerical results are presented to support the analysis.
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1. Introduction

The Helmholtz equation,
0021-9
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E-m
Duþ k2u ¼ 0; ð1Þ

describes a wide variety of wave propagation phenomena including electromagnetic waves and acoustics.

To solve this equation in an unbounded domain on a computer is difficult [12]. One approach is to truncate

the unbounded domain and introduce a boundary condition on the artificial outer surface. For many years
991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
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the standard boundary condition was a local absorbing condition that was a generalization of the Sommer-

feld radiation condition e.g. [4], but in recent years a number of models based on the perfectly matched

layers (PMLs) scheme have become popular. These layers minimize the reflections caused by the artificial

boundary.

Berenger [5,6] was the first to introduce a PML for the time dependent Maxwell equations. Abarbanel
and Gottlieb [1] proved that this approach is not well posed and since then several other approaches gen-

eralizing the ideas of Berenger have been suggested. A survey of PML layers is to be found in [7]. Turkel

and Yefet [14] showed that several of these approaches are linearly equivalent. The solvability and the

uniqueness of the PML equation for the Helmholtz equation was analyzed by Turkel and Tsynkov [11].

In their paper, the decaying function inside the PML was assumed to be, for convenience of the analysis,

a constant. This choice is not suitable for numerical computations.

We are interested in obtaining high accuracy for the approximation to the Helmholtz equation. In par-

ticular, we shall consider both fourth and sixth order accurate approximations in the physical domain
[9,10]. Hence, we shall use a PML in the far field to minimize reflections and so hopefully maintain the high

accuracy of the interior scheme. We extend [11] and search for a practical set of parameters in the PML

layer based on an analysis of the error in the combined problem. We also analyze the solvability and ac-

curacy of the PML schemes for this problem. The physical PML-Helmholtz scheme, which we develop,

is then solved by using high order finite differences schemes specially designed for the Helmholtz equation.

For a constant value of k in (1) we developed a sixth order accurate scheme (and a fourth order accurate

scheme for a variable k [8]). We analyze the effect of the use of these schemes on the solution and we find

conditions required for convergence. We also verify the assumption made in [11] that the overall accuracy
of the Helmholtz-PML scheme depends only of the order of accuracy inside the physical domain where we

solve the pure Helmholtz equation. We support our analysis with numerical results.

In order to invert the linear system one frequently uses iterative solvers. In the last section we construct a

preconditioner specially tailored for the combined problem. This preconditioner can be used with any Kry-

lov space method.

In designing and analyzing the PML-Helmholtz equation, we use the two-dimensional notation of

acoustics [11,14] for a waveguide. In two space dimensions this is equivalent to the TE version of Maxwell�s
equations. Denoting u as the pressure, we get (see for example [14])
o

ox
Sy

Sx
ux

� �
þ o

oy
Sx

Sy
uy

� �
þ k2SxSyu ¼ 0; ð2Þ
where
Sx ¼ 1þ rx

ik
; Sy ¼ 1þ ry

ik
and rx and ry are functions of only x,y, respectively. When rx=ry=0 this reduces to the Helmholtz equa-

tion (1). In the rest of the paper we only consider the strip so ry=0 and hence Sy=1.
2. The infinite strip problem

We consider a semi-infinite x-aligned waveguide from x=0 to x=1 with width p in the y direction, see

Fig. 1. We wish to solve the Helmholtz equation (1) in this semi-infinite strip with the boundary conditions:
uðx; 0Þ ¼ uðx; pÞ ¼ 0;
and
uð0; yÞ ¼ f ðyÞ; 06 y6 p; f ð0Þ ¼ f ðpÞ ¼ 0



Fig. 1. The x-aligned semi-infinite waveguide.

I. Singer, E. Turkel / Journal of Computational Physics 201 (2004) 439–465 441
and specify that u is outgoing at +1. Using the sine Fourier series expansion in the y direction we get
uðx; yÞ ¼
X1
n¼1

2

p

Z p

0

f ðyÞ sinðnyÞ dy
� �

e�i

ffiffiffiffiffiffiffiffiffi
k2�n2

p
x sin ny:
To simplify the analysis of the PML layer we assume the boundary condition at the entrance to the wave-
guide is
f ðyÞ ¼ sinðmyÞ; ð3Þ

where m is an integer. Then we get the exact solution which we label uexact
uexactðx; yÞ ¼ e�i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
x sinmy: ð4Þ
In the case m>k (evanescent wave) we get
uexactðx; yÞ ¼ e�
ffiffiffiffiffiffiffiffiffiffi
m2�k2

p
x sinmy:
3. Constructing the PML

Since we cannot solve the semi-infinite problem on a computer we instead solve in a bounded domain:

[0,L1]· [0,p] , and construct a PML. We first analyze an infinite PML and then a PML with width L2�L1,

see Fig. 2.
Fig. 2. The PML layer in the strip.
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In the interior of the strip (vacuum) we solve the Helmholtz equation and in the PML we solve Eq. (2).

In this case we choose ry=0 in the PML and so Sy=1 and (2) becomes
o

ox
1

Sx
ux

� �
þ o

oy
ðSxuyÞ þ k2Sxu ¼ 0; Sx ¼ SxðxÞ: ð5Þ
Using the Fourier series expansion in y we get
d

dx
1

Sx

dûðx; nÞ
dx

� �
þ Sxðk2 � n2Þûðx; nÞ ¼ 0: ð6Þ
We set
SxðxÞ ¼
1; 06 x6 L1;

1þ rx
ik ; x > L1:

(
ð7Þ
We generalize this by considering Sx(x)=A+(rx/(B+ik)). Our computational results show that the error
deteriorates when A differs appreciably from 1. Choosing B non-zero only slightly improves the accuracy.

Eq. (6) represents û in the entire space (vacuum+PML). Substituting
t ¼
Z x

0

SxðrÞ dr
and labeling
Y nðtÞ ¼ ûðx; nÞ

we get for Yn(t) an equation with constant coefficients
d2

dt2
Y nðtÞ þ ðk2 � n2ÞY nðtÞ ¼ 0:
The solution is
ûðx; nÞ ¼ cþe
i

ffiffiffiffiffiffiffiffiffi
k2�n2

p R x

0
SxðrÞ dr þ c�e

�i

ffiffiffiffiffiffiffiffiffi
k2�n2

p R x

0
SxðrÞ dr

; ð8Þ

where c+ and c� are arbitrary constants. The solution for (6) in an infinite PML is found when we add the

condition that only the right-traveling waves are present in addition to the condition in x=0.
Using (3) we get the solution for (5) which we label uI-pml (Infinite-PML):
uI-pmlðx; yÞ ¼
e
�i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R x

0
SxðrÞ dr

sinmy if m < k;

e
�

ffiffiffiffiffiffiffiffiffiffi
m2�k2

p R x

0
SxðrÞ dr

sinmy if m > k:

8<
: ð9Þ
Comparing (4) with (9) we get for 0 6 x 6 L1:
uI-pmlðx; yÞ ¼ uexactðx; yÞ

which shows that the PML is perfectly non-reflecting.

When solving the problem on a computer we need to truncate the semi-infinite domain at L2. We

choose the boundary condition as u=0 at x=L2. Choosing other types of boundary conditions at

x=L2 does not significantly change the solution. Hence, instead of c+=0 in (8) we need to solve

(6) with the boundary condition û(L2,n)=0. For our choice of f(y)=sin(my), with n 6¼m, û(x,n)=0

and boundary conditions
ûð0;mÞ ¼ 1; ûðL2;mÞ ¼ 0;
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we get
ûðx;mÞ ¼ cþe
i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R x

0
SxðrÞ dr þ c�e

�i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R x

0
SxðrÞ dr

:

Solving for c+ and c�
cþ ¼ �1

g� 1
; c� ¼ g

g� 1
;

where
g ¼ e
2i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R L2

0
SxðrÞ dr

: ð10Þ
Uniqueness is not guaranteed when g=1. Otherwise
2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p Z L2

0

SxðrÞ dr ¼ 2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p
L2 þ

1

ik

Z L2

L1

rxðrÞ dr
� �
since rx(x)>0 for x2 (L1,L2], then for k 6¼m it follows that Reð2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p R L2
0

SxðrÞ drÞ 6¼ 0 and g 6¼1 and

uniqueness follows. Henceforth, we assume that k 6¼m.

Labeling this unique solution uF-pml (Finite PML) we find
uF-pml ¼
�1

g� 1
e
i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R x

0
SxðrÞ dr þ g

g� 1
e
�i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R x

0
SxðrÞ dr

� �
sinmy ð11Þ
and for the case m<k (traveling)
errorðx; yÞ ¼ uI-pml � uF-pml ¼
1

g� 1
e
i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R x

0
SxðrÞ dr � e

�i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R x

0
SxðrÞ dr

� �
sinðmyÞ

¼ 2i

g� 1
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p Z x

0

SxðrÞ dr
� �

� sinðmyÞ:
We are interested in the solution in the interior and so we examine the error when 0 6 x 6 L1
errorðx; yÞk k1 ¼ max
06 x6 L1; 06 y6 p

2i

g� 1
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p
x

� �
� sinðmyÞ

����
���� ¼ 2

g� 1

����
����: ð12Þ
Our goal is to minimize the error and so we choose a suitable function rx(x) that will minimize the value of

j2/(g�1)j. We wish g in (10) to satisfy jgj�1. For the case m>k (evanescent) we get
errorðx; yÞ ¼ uI-pml � uF-pml ¼
g

g� 1
e
�

ffiffiffiffiffiffiffiffiffiffi
m2�k2

p R x

0
SxðrÞ dr � e

ffiffiffiffiffiffiffiffiffiffi
m2�k2

p R x

0
SxðrÞ dr

� �
sinðmyÞ

¼ � 2g
g� 1

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � k2

p Z x

0

SxðrÞ dr
� �

� sinðmyÞ
and in the interior
errorðx; yÞk k1 ’ g
g� 1

e

ffiffiffiffiffiffiffiffiffiffi
m2�k2

p
L1

����
����: ð13Þ
In this case we wish in (10) that jgj�1.



444 I. Singer, E. Turkel / Journal of Computational Physics 201 (2004) 439–465
4. Minimizing the error

The function rx : [L1,L2]!R is chosen so that it has the following properties:
rxðxÞ > 0 for x 2 ðL1; L2�;
rxðL1Þ ¼ 0;

rxðxÞ is smooth in ½L1; L2�:
A suitable choice for this function is
rxðxÞ ¼ r
x� L1

L2 � L1

� �p

; ð14Þ
where r is a positive constant and p P 1. When evanescent waves are present it may be more advantageous

to use an exponential fit for rx. In this study we shall only consider the polynomial fit. Integrating

we get
Z x

L1

rxðrÞ dr ¼
rðL2 � L1Þ

p þ 1

x� L1

L2 � L1

� �pþ1
and
uF-pml ¼ sinmy �

�1
g�1

ei
ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
x þ g

g�1
e�i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
x; 0 < x6 L1;

�1
g�1

e
i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
L1þ

ffiffiffiffiffiffi
1�e

p r L2�L1ð Þ
pþ1

x�L1
L2�L1

� �pþ1

þ g
g�1

e
�i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
L1�

ffiffiffiffiffiffi
1�e

p r L2�L1ð Þ
pþ1

x�L1
L2�L1

� �pþ1

; L1 < x6L2;

8>>>>>>><
>>>>>>>:

ð15Þ
where e=(m/k)2 and
g ¼ e
2i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R L2

0
SxðrÞ dr ¼ e2i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
L2þ

2r
ffiffiffiffi
1�e

p
L2�L1ð Þ

pþ1 : ð16Þ

For m<k we get
gj j ¼ e
2r
ffiffiffiffi
1�e

p
L2�L1ð Þ

pþ1 � 1
and for m>k
gj j ¼ e�2

ffiffiffiffiffiffiffiffiffiffi
m2�k2

p
L2 � 1;
which are the desired results for (12) and (13). Using the estimate (12) we get for m<k
errorðx; yÞk k1 ¼ 2

g� 1

����
���� ’ 2

g

����
���� ¼ 2e�

2r
ffiffiffiffi
1�e

p
L2�L1ð Þ

pþ1 ð17Þ
and for m>k using (13) we get
errorðx; yÞk k1 ’ g
g� 1

e

ffiffiffiffiffiffiffiffiffiffi
m2�k2

p
L1

����
���� ’ ge

ffiffiffiffiffiffiffiffiffiffi
m2�k2

p
L1

����
���� ¼ e�

ffiffiffiffiffiffiffiffiffiffi
m2�k2

p
2L2�L1ð Þ:
We see that for evanescent waves, m>k, the norm of the error does not depend on rx. To decrease the
error we can only increase the length of the PML region, i.e. 2L2�L1. When m<k the error depends ex-

ponentially on the value of 2r(L2�L1)/(p+1). From this continuous analysis we conclude that the param-
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eters should be chosen to satisfy the following criteria. A large value of r, a wide PML (extend L2�L1) and

p=1. Further analysis (below) for the numerical algorithm demonstrates that one should be more careful

when choosing these parameters especially p.

We need a scheme to approximate the uF-pml solution. We use high-order finite differences schemes in the

interior. To reduce the size of the matrices we wish to minimize the number of points in the artificial per-
fectly matched layer. In the next sections we present these schemes and analyze their influence on the error.

We will also see that the choice of a large value of r and a small value of p is inaccurate.
5. Finite differences

Let /i,j be the numerical approximation to the uF-pml(xi,yj) solution. We wish to have a symmetric stencil

in both directions x and y. A scheme having this property has the form
A0/i;j þ Asrs þ Acrc ¼ 0;
where
rs ¼ /i;jþ1 þ /iþ1;j þ /i;j�1 þ /i�1;j
is the sum of the values of the mid-side points and
rc ¼ /iþ1;jþ1 þ /iþ1;j�1 þ /i�1;j�1 þ /i�1;jþ1
is the sum of the values at the corner points.

In the PML we need to solve a variable coefficient problem
o

ox
ðAuxÞ þ

o

oy
ðBuyÞ þ k2Cu ¼ 0: ð18Þ
In our strip problem
A ¼ 1

Sx
; B ¼ C ¼ Sx:
We have not found a compact formula which keeps the self-adjoint form of Eq. (18) and is also more than

second order accurate for non-constant A,B,C. Instead, we use high-order accurate self-adjoint schemes in
the interior and automatically switch to a second order accurate scheme in the PML layer while preserving

the self-adjoint property. Since the PML is artificial we are only interested in preserving the global high

accuracy in the interior domain. Using a general second order accurate scheme in the PML usually corrupts

the high order accuracy used in the interior, and yields an overall low accuracy. Thus, matching the schemes

between the interior and the PML is very important.

We start with the standard second order three point symmetric approximation
DxðAuxÞj ¼
Aiþ1

2
;jðuiþ1;j � ui;jÞ � Ai�1

2
;jðui;j � ui�1;jÞ

h2
: ð19Þ
We construct a more general divergence free form by averaging this approximation in the j direction. So we

take [Aux]x=aDx(Aux)j+((1�a)/2)(Dx(Aux)j+1+Dx(Aux)j� 1) and a similar formula in the y direction. The

approximation to Cu is a general nine point formula
Cu½ � ¼ 1� 4bs � 4bcð ÞCi;jui;j þ bs

Ciþ1;juiþ1;j þCi�1;jui�1;j

þCi;jþ1ui;jþ1 þCi;j�1ui;j�1

� �
þ bc

Ciþ1;jþ1uiþ1;jþ1 þCi�1;jþ1ui�1;jþ1

þCiþ1;j�1uiþ1;j�1 þCi�1;j�1ui�1;j�1

� �
:

ð20Þ
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Thus, for A=B=C=1 we get
A0 ¼ �4aþ ð1� 4bs � 4bcÞðkhÞ
2
;

As ¼ 2a� 1þ bsðkhÞ
2
; Ac ¼ 1� aþ bcðkhÞ

2
;

ð21Þ
where h is the grid-size of the stencil. This approximation is guaranteed to be O(h2) for all values of a, bs, bc.
Choosing a=1, bs=0, bc=0 recovers the standard pointwise representation which is second order accurate

with
A0 ¼ �4þ ðkhÞ2; As ¼ 1; Ac ¼ 0: ð22Þ

We use higher-order schemes for the pure Helmholtz equation. Choosing
a ¼ 5

6
; bs ¼

1

12
� c
72

; bc ¼
c

144
for an arbitrary constant c we achieve an O(h4) scheme yielding
A0 ¼ � 10

3
þ ðkhÞ2 2

3
þ c
36

� �
;

As ¼
2

3
þ ðkhÞ2 1

12
� c
72

� �
; Ac ¼

1

6
þ ðkhÞ2 c

144
:

ð23Þ
This stencil is fourth-order accurate also for variable k(x,y) as proved in [8]. Choosing c=14/5 and adding

O((kh)4) terms to the coefficients one can achieve sixth order accuracy [10]. In particular, for arbitrary d,
choosing
a ¼ 5

6
; bs ¼

2

45
þ 3� 2d

720
ðkhÞ2; bc ¼

7

360
þ d
720

ðkhÞ2;

A0 ¼ � 10

3
þ 67

90
ðkhÞ2 þ d� 3

180
ðkhÞ4;

As ¼
2

3
þ 2

45
ðkhÞ2 þ 3� 2d

720
ðkhÞ4;

Ac ¼
1

6
þ 7

360
ðkhÞ2 þ d

720
ðkhÞ4

ð24Þ
yields a O(h6) scheme for constant k.

Hence, when we use one of the schemes ((22), (23) or (24)) for the combined problem, the scheme is lo-

cally high order accurate in the interior and is second order accurate in the PML layer. The accuracy in the

PML is physically irrelevant. Hence, we wish that the use of the low-order accuracy in the PML will not

destroy the global high-order accuracy in the interior.
6. Exploring the numerical error

Using a Taylor expansion in the approximation (19) we get
DxðAuxÞj ¼
o

ox
ðAuxÞ þ

h2

24

o3

ox3
ðAuxÞ þ

o

ox
ðAuxxxÞ

� �
þOðh4Þ:
Averaging in the y direction yields
½Aux�x ¼ aDxðAuxÞj þ
1� a
2

ðDxðAuxÞjþ1 þ DxðAuxÞj�1Þ ¼
o

ox
ðAuxÞ þ mh2 þOðh4Þ;
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where
m ¼ 1

24

o3

ox3
Auxð Þ þ o

ox
Auxxxð Þ þ 12 1� að Þ o2

oy2
o

ox
ðAuxÞ

� �
:

Using the Taylor expansion we find that approximation (20) satisfies
Cu½ � ¼ Cuþ h2 bs þ 2bcð Þ ðCuÞxx þ ðCuÞyy
� �

þOðh4Þ:
Therefore, the finite difference formula is equivalent to
o

ox
ux
Sx

� �
þ o

oy
ðSxuyÞ þ k2SxuþHh2h

2 þOðh4Þ; ð25Þ
where
Hh2 ¼
1

24

o
3

ox3
ux
Sx

� �
þ o

ox
uxxx
Sx

� �
þ 2Sxuyyyy

� �
þ 1� a

2

o
2

oy2
o

ox
ux
Sx

� �
þ o

2

ox2
ðSxuyyÞ

� �
þ k2ðbs þ 2bcÞððSxuÞxx þ SxuyyÞ: ð26Þ
In order for the approximation to be accurate we require that h2Hh2�1.
Using u=uF-pml in (26), assuming for the analysis m�k and k�1, and collecting the O(k4) terms we

get
Hh2 ’ c�ðk2 � m2Þ2 1

12
� l

� �
S3
xe

�
ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R x

0
SxðrÞ dr

; ð27Þ
where
l ¼ bs þ 2bcð Þ
1� e

; e ¼ m
k

� �2

:

Using the choice of rx (14), the exact values of the constants c± in the solution uF-pml (15) and denoting
z ¼ x� L1

L2 � L1

; 06 z6 1; ð28Þ
we get inside the PML the approximation
Hh2j j ’ k2 � m2
� �2 1

12
� l

� �
e�

ffiffiffiffiffiffi
1�e

p r L2�L1ð Þ
pþ1

zpþ1

1þ r
k

� �2

z2p
� �3=2

:

We see in Figs. 3–7 the behavior of jHh2j for various values of p. In these figures the x-axis of the graph is

the variable z, defined in (28). We set bs+2bc=0 which is what is used in the standard pointwise represen-

tation (22). In most cases p should be set as 2 or 4. Increasing the value of r increases also the value of jHh2j.
These two facts contradict our desire to decrease the error (17). Increasing L2�L1 decreases the value of

jHh2j as well as the error, but increases the work. A thick PML requires more storage and CPU and also

means a harder task for the linear solvers.

An interesting result is found when examining the value of jHh2j near the intersection between the vac-

uum and the PML layer, i.e. z!0+. At this point we can find a lower bound of jHh2j and get
Hh2j j ’ ðk2 � m2Þ2 1

12
� l

� �
: ð29Þ



Fig. 4. Value of jHh2j for k=8, m=1, r=150, L2�L1=p/4.

Fig. 3. Value of jHh2j for k=8, m=1, r=50, L2�L1=p/4.

Fig. 5. Value of jHh2j for k=8, m=1, r=50, L2�L1=p/8.
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Fig. 6. Value of jHh2j for k=12, m=1, r=50, L2�L1=p/4.

Fig. 7. Value of jHh2j for k=8, m=3, r=50, L2�L1=p/4.
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Combining this result with Figs. 6 and 7 we conclude that as (k2�m2)2 increases, the schemes become

more inaccurate independent of the values of the other parameters, r, p and L2�L1. This requires one to

refine the grid.

We can also decrease the value of jHh2j by choosing l!1/12. When we examine the value of l in the

high-order schemes (23) and (24) we get
1

12
� l ¼ 1

12

m2

k2 � m2
:

Hence, for high order accurate schemes, (27) is not valid and we get instead
jHh2 j’
rp

12ðL2 � L1Þ
ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
ðk2 � 4m2Þe�

ffiffiffiffiffiffi
1�e

p rðL2�L1Þ
pþ1

zpþ1

zp�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r

k

� �2

z2p
r

: ð30Þ



Fig. 8. Value of jHh2j in the high-order schemes for k=8, m=1, r=50, L2�L1=p/4.

Fig. 9. Value of jHh2j in the high-order schemes for k=8, m=1, r=150, L2�L1=p/4.

Fig. 10. Value of jHh2j in the high-order schemes for k=8, m=1, r=50, L2�L1=p/8.
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Fig. 11. Value of jHh2j in the high-order schemes for k=12, m=1, r=50, L2�L1=p/4.
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In Figs. 8–11 we find similar results to the ones we found in the case of the second order schemes. We

see that the dependence on the value of (k2�m2) is reduced, which means better performance for large val-

ues of k (compare Figs. 6 and 11). Another quality, which we see from these figures and also from (30), is
that p=1 is a very poor choice, because jHh2j achieves its maximum when z!0+. This does not occur when

p>1.
7. The modified equation

Another approach to analyze the numerical solution is the modified equation. We start with (25) and

(26), find the analytical solution for the equation
o

ox
ux
Sx

� �
þ o

oy
ðSxuyÞ þ k2Sxuþ h2

1
24

o3

ox3
ux
Sx

� �
þ o

ox
uxxx
Sx

� �
þ 2Sxuyyyy

� �
þ 1�a

2
o2

oy2
o
ox

ux
Sx

� �
þ o2

ox2 Sxuyy
� �� �

þk2 bs þ 2bcð Þ Sxuð Þxx þ Sxuyy
� �

0
BBB@

1
CCCA ¼ 0:
When the input boundary condition is sin(my) then the only Fourier coefficient that does not vanish is
U= û(x,m). We recover the ODE
U 0

Sx

� �0

þ ðk2 � m2ÞSxU þ h2

1
24

U 0

Sx

� �000
þ U 000

Sx

� �0
þ 2m4SxU

� �
� 1�a

2
m2 U 0

Sx

� �0
þ ðSxUÞ00

� �
þk2ðbs þ 2bcÞ ðSxUÞ00 � m2SxU

� �

0
BBBB@

1
CCCCA ¼ 0 ð31Þ
with the boundary conditions
Uð0Þ ¼ 1; UðL2Þ ¼ 0:
Because our main interest is in the high-order schemes we choose
a ¼ 5

6
; bs þ 2bc ¼

1

12
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(for the O(h6) we take bs+2bc= (1/12)+O(k2h2)). So, (31) becomes
U 0

Sx

� �0

þ ðk2 � m2ÞSxU ¼ � h2

24

U 0

Sx

� �000
þ U 000

Sx

� �0

�2m2 U 0

Sx

� �0
þ 2ðk2 � m2Þ SxUð Þ00 � m2SxU

� �
0
B@

1
CA: ð32Þ
If p=1 then Sx is not differentiable near x=L1. Hence, we assume that p P 2. In the interior Sx=1 and the

right-hand side of the equation becomes
� h2

12
ðU ð4Þ � m2U 00 þ ðk2 � m2ÞðU 00 � m2UÞÞ ¼ � h2

12

d2

dx2
ðU 00 þ ðk2 � m2ÞUÞ � m2ðU 00 þ ðk2 � m2ÞUÞ

� �
and we can rewrite (32)
1þ h2

12

d2

dx2
� m2

� �� �
U 00 þ ðk2 � m2ÞU
� �

¼ 0
which leads to
U 00 þ ðk2 � m2ÞU ¼ 0
which is the Fourier expansion of the Helmholtz equation and so in the interior, we solve the Helmholtz

equation through O(h2). Unlike (6) we have not found the exact solution to (32). When h2�1 we look
for a perturbed solution in the form of
U ¼ e
�i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R x

0
SxðrÞ 1þh2q�ðrÞð Þ dr

: ð33Þ

Inserting this into (32) and collecting all the terms with O(h2) yields a differential equation for q±
�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p
q0� � 2ðk2 � m2Þq�Sx ¼

k2 � m2

24
�2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p
S0
xSx þ 3S00

x þ
1

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p S00
x

Sx

� �0� �
:

In the interior the right-hand side of this equation vanishes. This emphasizes that only the O(h2) factor

comes from the PML approximation. Labeling g�ðxÞ ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p R xSxðrÞ dr and multiplying the equation

with the integrating factor e2g±(x) we get
q�e
2g�

� �0 ¼ � 1

24
2g00�g

0
� þ 3g000� þ g000�

g0�

� �0� �
e2g� :
Integrating by parts yields
q� ¼ �1

24
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p
S0
x þ

S00
x

Sx

� �
þ d�e

�2i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R x

0
SxðrÞ dr
with constants d±. Inserting into (33) we obtain an estimate for the numerical solution using the high-order

schemes
ûðx;mÞ ¼ cþe
i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R x

0
SxðrÞ dr�h2

48
WþðxÞ þ c�e

�i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R x

0
SxðrÞ dr�h2

48
W�ðxÞ; ð34Þ
where d± are constants and
WþðxÞ ¼ �ðk2 � m2ÞS2
xðrÞj

x
0 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p
2S0

xðrÞj
x
0 þ dþe

�2i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R x

0
SxðrÞ dr

;

W�ðxÞ ¼ �ðk2 � m2ÞS2
xðrÞj

x
0 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p
2S0

xðrÞj
x
0 þ d�e

þ2i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R x

0
SxðrÞ dr
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In the interior Sx=1 and so ðS2
xÞ

0
and S00

x vanish. So for x2 [0,L1]
ûðx;mÞ ¼ cþei
ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
x�h2

48
dþe�2i

ffiffiffiffiffiffiffiffi
k2�m2

p
x þ c�e�i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
x�h2

48
d�e2i

ffiffiffiffiffiffiffiffi
k2�m2

p
x
: ð35Þ
To find the constants c± and d± we use the boundary conditions
ûð0;mÞ ¼ 1þ 0 � h2; ûðL2;mÞ ¼ 0þ 0 � h2
and the approximation
eaðxÞþh2bðxÞ ’ eaðxÞ 1þ h2bðxÞ
� �

: ð36Þ
Using (34) and (35) near the boundaries
ûð0;mÞ ¼ cþe�
h2
48
dþ þ c�e�

h2
48
d� ’ cþ 1� h2

48
dþ

� �
þ c� 1� h2

48
d�

� �
and
ûðL2;mÞ ¼ cþe
i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R L2

0
SxðrÞ dr�h2

48
WþðL2Þ þ c�e

�i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R L2

0
SxðrÞ dr�h2

48
W�ðL2Þ

’ cþe
i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R L2

0
SxðrÞ dr

1� h2

48
WþðL2Þ

� �
þ c�e

�i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p R L2

0
SxðrÞ dr

1� h2

48
W�ðL2Þ

� �
:

Solving these equations we find that the values of c+ and c� are the same as in the formula for uF-pml (11),

and
dþ ¼ 4i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p
S0
xj
L2
0

g
g� 1

; d� ¼ 4i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p
S0
xj
L2
0

1

g� 1
;

where the value of g is given in (16). Inserting into (35), approximating using (36) and rearranging, we get

the approximate solution of the high-order schemes in the interior, which we label uN-pml
uN-pml ¼
�1
g�1

ei
ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
x þ g

g�1
e�i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
x

�i h
2

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p
S0
xj
L2
0

g
ðg�1Þ2 ei

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
x � e�i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
x

� �
0
B@

1
CA sinmy

¼ uF-pml þ
h2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p
S0
xj
L2
0

g

ðg� 1Þ2
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p
x

� �
sinmy: ð37Þ
Using our choice for Sx:
juN-pml � uF-pml j¼
h2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p rp
ik L2 � L1ð Þ

g

ðg� 1Þ2
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

p
x

� ������
�����

’ h2

6

r
ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
p

ðL2 � L1Þ
e�

2r
ffiffiffiffi
1�e

p
ðL2�L1Þ

pþ1 : ð38Þ
One of our goals was to show that the use of the second order approximation inside the PML layer does not

corrupt the high-order accuracy in the interior. We can prove this for the O(h4) schemes (23) from the error

estimate (38). Taking a large value of 2r
ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
ðL2 � L1Þ=ðp þ 1Þ then the term 2e�2r

ffiffiffiffiffiffi
1�e

p
ðL2�L1Þ=ðpþ1Þ is expo-
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nentially small and so is negligible compared with O(hr) for all integers r. As r becomes large the exponen-

tial term dominates and the accuracy improves. However, we should not choose r large that rh2 is large.
Thus, in the interior
uN-pml ¼ uF-pml þOðh4Þ ¼ uexact þOðh4Þ þOðh2Þe�
2r
ffiffiffiffi
1�e

p
ðL2�L1Þ

pþ1 ; ð39Þ
where O(h4) comes from the accuracy of the scheme. For the O(h6) scheme numerical computations dem-

onstrate a similar error estimate
uN-pml ¼ uexact þOðh6Þ:
8. Numerical results

We present computational results for the Helmholtz equation in the semi-infinite strip. The region to the

right of L1 is replaced by a PML equation which is then truncated at L2. In each computation we wish to

demonstrate one of the properties that has been analyzed. For all the results we use a uniform grid-size,

where n denotes the number of gridpoints along the y axis, so h=p/n. We measure the error in the maximum

norm in the square [0,p]· [0,p] and so L1 P p. The numerical approximation is denoted by /. We use a

standard LU factorization to solve the linear systems that arise from the finite differences schemes. For fine

grids a LU solver is not efficient.
8.1. The case m>k: evanescent waves

We wish to verify our error estimate e�
ffiffiffiffiffiffiffiffiffiffi
m2�k2

p
ð2L2�L1Þ. For the test case we consider
m ¼ 5; k ¼ 4:5; L1 ¼ p; L2 ¼
6

5
p; p ¼ 2; r ¼ 20; n ¼ 32: ð40Þ
In this case
e�
ffiffiffiffiffiffiffiffiffiffi
m2�k2

p
ð2L2�L1Þ ’ 6:87� 10�5:
We solve the problem with the O(h6) solver (24) with the parameter c=1. The computed solution / approx-

imates uN-pml and satisfies:
err ¼ uexact � /k k ¼ 6:53� 10�5:
Refining the gridsize, taking n=64 we get computationally
err ¼ 7:19� 10�5
which shows that we cannot improve the accuracy of the computation because we reached our desired level
of accuracy.

Choosing instead L2=1.6p in (40) we get
e�
ffiffiffiffiffiffiffiffiffiffi
m2�k2

p
ð2L2�L1Þ ’ 4:29� 10�7
and with n=32 we get computationally
err ¼ 1:09� 10�6



Table 1

The Case m>k

No. Parameter changed Value of err

1 p=1 errbase
2 p=4 errbase
3 r=100 errbase
4 n=64 1.28·10�8. (1/2)6 Æerrbase
5 n=128 1.99·10�10. ((1/2)6)2 Æerrbase
6 O(h6) scheme with c=3 8.06·10�7

7 O(h4) scheme with c=1, n=32 6.16·10�6

8 O(h4) scheme with c=1, n=64 3.46·10�7. (1/2)4 Æ#7
9 m=7, k=5 3.58·10�6

10 L1=(5/4)p, L2=(13/8)p errbase
11 k=0.0000001 8.51·10�7
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with n=64
err ¼ 2:01� 10�7;
and with n=128
err ¼ 2:13� 10�7:
Now, the first refinement of the grid improves the result, but we cannot improve it further, as we can see

in the second refinement. That is because we again reached our lower bound.

For a second test case we choose default values
m ¼ 5; k ¼ 1; L1 ¼ p; L2 ¼
3

2
p; p ¼ 2; r ¼ 20; n ¼ 32; Oðh6Þ scheme with c ¼ 1:
We have the lower error bound
e�
ffiffiffiffiffiffiffiffiffiffi
m2�k2

p
ð2L2�L1Þ ’ 4:28� 10�14
and choose as our base error
errbase ¼ 8:18� 10�7
which is far from the lower error bound. In Table 1 we see the effect of parameter changes from the base

case. We list only the changes from the default.

	 The independence of the error on the values of p (results 1,2), r (result 3) and 2L2�L1 (result 10).We see

(result 9) that if we change m,k in such a way that we preserve the value of m2�k2, the error changes. We

can explain this by the assumption that as m increases the accuracy of the numerical schemes decreases.

	 The efficiency of our high-order scheme for these problems. We can clearly verify the O(h6) behavior ver-

sus the O(h4) one (results 4–8).
	 The value of c in the high order schemes is of minor importance and affects the parameter c in the leading

order of the error ch4 or ch6.

	 We maintain the same behavior even for k!0 (result 11).

In a real problem we cannot control the value of m (the input boundary condition). In the Fourier series

expansion we have a complete set of non-zero values. We concentrate on the leading mode value.
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8.2. The case m<k: traveling waves

8.2.1. The dependence on the accuracy of the scheme

We wish to computationally verify our proof that the global behavior in the interior depends only on the

local accuracy used in the interior. We examine the high-order schemes as well as the standard O(h2) scheme
on a test case. To check this behavior we have to exclude errors that arise from other approximations. Thus,

we take in (17) 2e�2r
ffiffiffiffiffiffi
1�e

p
ðL2�L1Þ=ðpþ1Þ ! 0 and make sure that ðh2=6Þðr

ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
p=ðL2 � L1ÞÞe�2r

ffiffiffiffiffiffi
1�e

p
ðL2�L1Þ=ðpþ1Þ in

(38) is negligible.

We take as our base test case
Table

err= iu

n

16

32

48

64

80

96

112

128
m ¼ 6; k ¼ 8; L1 ¼
5

4
p; L2 ¼

7

4
p; p ¼ 2; r ¼ 25:
In this case
2e�
2r
ffiffiffiffi
1�e

p
ðL2�L1Þ

pþ1 ’ 6:03� 10�8
and
r
ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
p

6ðL2 � L1Þ
’ 3:5
and if n P 16
h2 ¼ p
n

� �2

6
p
16

� �2

’ 3:8� 10�2
and
h2
r

ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
p

6ðL2 � L1Þ
6 0:14:
Thus, our high-order schemes should yield good results. In Table 2 we see the value of err= iuexact�/i1
resulting from the use of the schemes: PT (22), HO-4 (23) and HO-6 (24). Increasing the value of n decreases

the value of the gridsize h in both directions. We assume that for small values of h,
err ’ CðkÞn�r ¼ CðkÞ
pr

hr;
where r is the order of the scheme, i.e.
r ¼
2 for PT scheme;

4 for the schemes EB;HO;

6 for the schemes EB-6; HO-6:

8><
>:
2

exact�/i1 for m=6, k=8, L1=(5/4)p, L2=(7/4)p, p=2, r=25

PT HO-4, c=0 HO-4, c=2 HO-6, c=0 HO-6, c=2

1.72·100 5.91·10�2 3.15·10�1 4.25·10�2 1.46·10�1

4.85·10�1 4.21·10�3 1.97·10�2 6.86·10�4 2.32·10�3

2.17·10�1 8.54·10�4 3.93·10�3 6.98·10�5 2.07·10�4

1.23·10�1 2.73·10�4 1.25·10�3 1.49·10�5 3.72·10�5

7.86·10�2 1.13·10�4 5.12·10�4 4.74·10�6 9.89·10�6

5.46·10�2 5.45·10�5 2.47·10�4 1.93·10�6 3.38·10�6

4.02·10�2 2.95·10�5 1.34·10�4 9.07·10�7 1.38·10�6

3.08·10�2 1.73·10�5 7.85·10�5 4.71·10�7 6.47·10�7



Fig. 12. �log(err) by log(n) for the finite differences schemes.
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Hence, if n=2l
Table

Conve

n

16

32

64

128
�log2ðerrÞ ’ l � r � log2CðkÞ:

We calculate r, the order of accuracy, by measuring the slope of the curve (see Fig. 12). This computation-

ally verifies our hypothesis.

The computing time required for all of these scheme, applied on a given problem, is the same when we

use Gaussian elimination. This fact emphasizes the benefit of using the high order schemes.

8.2.2. Convergence to the modified solution

We wish to confirm the modified equation�s solution (37) which we labeled uN-pml. We start with the

O(h4) approximation with c=0, and solve the problem with
m ¼ 1; k ¼ 5; L1 ¼
5

4
p; L2 ¼

3

2
p; p ¼ 2; r ¼ 20:
In this case the lower error bound is rather poor and we get
2e�
2r
ffiffiffiffi
1�e

p
ðL2�L1Þ

pþ1 ’ 7� 10�5:
Let / be the computational approximation, uexact be the exact solution to the combined Helmholtz-PML

problem and uNPML given by (37). We measure two kinds of errors
errex ¼ uexact � /k k1

and
errho ¼ uN-pml � /
		 		

1:
3

rgence to uho for m=1, k=5, L1=(5/4)p, L2=(3/2)p, p=2, r=20 with HO-4 scheme

errex errho

3.05·10�2 3.04·10�2

2.00·10�3 1.93·10�3

1.85·10�4 1.19·10�4

7.67·10�5 7.41·10�6



Table 4

Convergence to uho for m=1, k=5, L1=(5/4)p, L2=(3/2)p, p=2, r=20 with HO-6 scheme

n errex errho

16 6.19·10�3 6.12·10�3

32 5.64·10�4 4.93·10�4

64 9.91·10�5 2.88·10�5

128 7.18·10�5 1.76·10�6
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Our goal is to show that the scheme converges to the uN-pml solution with O(h4). We collect the results in

Table 3. We see that the scheme approximates the uN-pml solution and
Table

Conve

n

16

32

64

128

Table

Conve

n

16

32

64

128
errhoðn ¼ 32Þ
errhoðn ¼ 16Þ ’

errhoðn ¼ 64Þ
errhoðn ¼ 32Þ ’

errhoðn ¼ 128Þ
errhoðn ¼ 64Þ ’ 1

2

� ��4
which is consistent with our analysis. The analytic solution is uexact. To converge to uexact we set the param-

eters such that the exponent 2e�2r
ffiffiffiffiffiffi
1�e

p
ðL2�L1Þ=ðpþ1Þ is small enough.

We solve the same problem with the O(h6) scheme with c=0 (results in Table 4). Again, we see that we
approach uN-pml and not uexact, but this time we do not get a O(h6) approximation. For instance er-

rho(n=64)/errho(n=32). (1/2)�4 and not (1/2)�6. To find the cause we change L2 to 2p, to achieve better

damping in the PML (Table 5). This time errho(n=64)/errho(n=32). (1/2)�4.48, and in other problems (last

subsection) we do get O(h6). The problem is that the evaluated uN-pml is not what we are approximating in

the O(h6) scheme. In the analysis of the modified equation we approximated the O(h2) term and neglected

the O(h4) term. However, this high order term is significant in some problems and in others is negligible.

Choosing p=2 can be accurate for some problems (see Table 2), however, we should choose p P 4 for

the O(h6) scheme. For instance in Table 6, we do get the desired approximation
errhoðn ¼ 64Þ
errhoðn ¼ 32Þ ’

errhoðn ¼ 128Þ
errhoðn ¼ 64Þ ’ 1

2

� ��6

:

5

rgence to uho for m=1, k=5, L1=(5/4)p, L2=2p, p=2, r=20 with HO-6 scheme

errex=errho

1.81·10�3

6.29·10�5

3.33·10�6

1.99·10�7

6

rgence to uho for m=1, k=5, L1=(5/4)p, L2=(7/4)p, p=4, r=200 with HO-6 scheme

errex=errho

4.77·10�3

1.15·10�5

1.87·10�7

2.98·10�9



Table 7

The error dependance on the value of L1

L1 j2/(g�1)j err

1 4.91·10�14 3.01·10�3

1.25 4.73·10�14 3.33·10�3

1.5 4.53·10�14 2.85·10�3

1.75 4.30·10�14 3.44·10�3

2 4.03·10�14 2.68·10�3

2.25 3.75·10�14 3.54·10�3

2.5 3.44·10�14 2.50·10�3

I. Singer, E. Turkel / Journal of Computational Physics 201 (2004) 439–465 459
8.2.3. Selecting the parameters in the function rx
We wish to check the influence of the parameters we choose in the approximation, L1, L2�L1, p and r,

on a given problem.

8.2.3.1. Value of L1. The error estimates we obtained imply that the value of L1 is relatively unimportant

(we approximated j2/(g�1)j that depends on L1 by j2/gj). We check this with the test case
Table

The er

L2�L

p/16
p/8
p/4
p/2
p

Table

The er

L2�L

p/16
p/8
p/4
p/2
p

m ¼ 1; k ¼ 10; L1 � L2 ¼
p
4
; p ¼ 4; r ¼ 100; n ¼ 32; Oðh6Þ scheme with c ¼ 0:
The value of j 2=g j¼ 2e�2r
ffiffiffiffiffiffi
1�e

p
ðL2�L1Þ=ðpþ1Þ ’ 5:36� 10�14. We summarize the results in Table 7.

8.2.3.2. Width of the PML, L2�L1. To support our theory we show that the accuracy increases as we take a

thicker PML layer. Taking
m ¼ 1; k ¼ 10; L1 ¼
5p
4
; p ¼ 4; r ¼ 100; Oðh6Þ scheme with c ¼ 0; ð41Þ
8

ror in the HO-6 scheme as a function of the width of the PML

1 2e�2r
ffiffiffiffiffiffi
1�e

p
ðL2�L1Þ=ðpþ1Þ err n=32 err n=64

8.08·10�4 3.13·10�1 8.53·10�3

3.26·10�7 5.92·10�2 6.08·10�5

5.31·10�14 3.33·10�3 3.34·10�5

1.41·10�27 2.16·10�3 3.33·10�5

9.98·10�55 2.16·10�3 3.33·10�5

9

ror in the HO-6 scheme as a function of width of PML and k, for n=32

1 k=2.5 k=5 k=13

1.68·10�1 2.42·10�1 4.21·10�1

1.34·10�2 2.16·10�2 1.10·10�1

5.16·10�5 1.78·10�4 1.26·10�2

1.03·10�7 1.23·10�5 1.44·10�2

1.80·10�8 1.24·10�5 1.44·10�2



Table 10

The error in the HO-6 scheme for a constant value of 2e�2r
ffiffiffiffiffiffi
1�e

p
ðL2�L1Þ=ðpþ1Þ

L2�L1 r err n=32 err n=64

p/8 400 1.7·10�1 9.73·10�4

p/4 200 5.04·10�3 3.36·10�5

p/2 100 2.16·10�3 3.33·10�5

p 50 2.16·10�3 3.33·10�5
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we summarize the results in Table 8. We verify that as the mesh becomes finer we maintain the O(h6) ac-

curacy if the PML is thick enough. Increasing the width of the PML beyond a certain limit does not im-

prove the accuracy while requiring more storage and computational time. For small values of h we

obtain more accurate results, but need a thicker PML as seen in Table 9.

Our main interest is to take a thin PML, while maintaining the accuracy. We control this by increasing

the value of r. In Table 10 we set 2e�2r
ffiffiffiffiffiffi
1�e

p
ðL2�L1Þ=ðpþ1Þ ¼ 1:41� 10�27 for the test problem (41). We conclude

that as long as the PML is not too thin and we have enough points in the PML, we get the desired accuracy.

8.2.3.3. Fixed number of points in the PML. Computational practice is to set a fixed number of points inside

the PML. Thus, when we decrease the gridsize, we change the physical width of the PML. In the above

computations we choose the physical width of the PML as constant. We want to see if this influences

our results. To check the behavior we set a problem with
Table

Result

n

16

32

64

Table

Result

n

16

32

64

Table

Result

n

16

32

64
m ¼ 2; k ¼ 10; L1 ¼
5p
4

11

s for 8 points inside the PML with m=2, k=10, L1=5p/4, p=2, r(L2�L1)/(p+1)=25p/8

r L2�L1 HO-4 HO-6

18.75 p/2 9.66·10�1 1.40·10�1

37.5 p/4 5.15·10�2 3.02·10�3

75 p/8 3.62·10�4 9.16·10�4

12

s for 8 points inside the PML m=2, k=10, L1=5p/4, p=4, r(L2�L1)/(p+1)=25p/8

r L2�L1 HO-4 HO-6

31.25 p/2 1.06·100 1.08·10�1

62.5 p/4 5.14·10�2 1.79·10�3

125 p/8 3.14·10�3 7.83·10�5

13

s for 8 points inside the PML with m=2, k=10, L1=5p/4, p=4, r(L2�L1)/(p+1)=15p/8

r L2�L1 HO-4 HO-6

18.75 p/2 1.01·100 1.34·10�1

37.5 p/4 5.16·10�2 1.64·10�3

75 p/8 3.17·10�3 3.06·10�5 (2.55·10�5 towards uN-pml)



Table 14

Results for 16 points inside PML with m=2, k=10, L1=5p/4, p=2, r(L2�L1)/(p+1)=25p/8

n r L2�L1 HO-4 HO-6

16 9.375 p 9.94·10�1 1.23·10�1

32 18.75 p/2 5.16·10�2 1.67·10�3

64 37.5 p/4 3.21·10�3 1.19·10�4

Table 15

Results for 16 points inside the PML with m=2, k=10, L1=5p/4, p=4, r(L2�L1)/(p+1)=25p/8

n r L2�L1 HO-4 HO-6

16 15.625 p 9.94·10�1 1.24·10�1

32 31.25 p/2 5.17·10�2 1.65·10�3

64 62.5 p/4 3.17·10�3 2.52·10�5
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and for different values of gridsize h, use the same number of points inside the PML. In the first test (Tables

11–13) we use 8 points in the PML, and in the second test (Table 14 and 15) 16 points. We see that we lose

the O(h6) accuracy when p=2 (Tables 11 and 14), but maintain the O(h4) behavior. This is because for the

O(h6) scheme we have to choose p P 4 and have a sufficiently wide layer (compare with the results in the

last section). For thin PML layers it is noticed (Table 12) that we cannot maintain the O(h6) behavior if we

choose a large r, but by taking smaller value of r we lose the approximation to uexact and maintain the O(h6)

accuracy towards the modified equation solution uN-pml. Thus, if we wish to work with a fixed number of

points inside the PML we should set the parameters such that 2e�2r
ffiffiffiffiffiffi
1�e

p
ðL2�L1Þ=ðpþ1Þ is small enough and

choose p P 4 for HO-6 and p=2 for HO-4.

We denote n_pml as the number of points in the PML
Table

m=6 a

k

Error

Table

Result

p

1

2

3

4

5

10

30
2e�
2r
ffiffiffiffi
1�e

p
ðL2�L1Þ

pþ1 ¼ 2e�
2h�n pml�r

ffiffiffiffi
1�e

p

pþ1 :
16

nd k approaches m with L1=5p/4, L2=7p/4, r=25 with 32 points

8 7 6.5 6.25 6.1 6.05

6.86·10�04 2.44·10�04 1.16·10�04 0.00138 0.0182 0.069

17

s for different values of p for m=1, k=10, L1=5p/4, L2=7p/4, r=100, O(h6) with c=0

Estimate (17) err n=32 err n=64 err n=128 err32/err64 err64/err128

1.32·10�68 1.19·10�1 2.08·10�2 4.86·10�3 5.7 2.1

1.12·10�45 1.98·10�3 7.70·10�5 7.59·10�6 25.7 25.1

2.30·10�34 2.22·10�3 3.50·10�5 6.21·10�7 63.4 56.3

1.41·10�27 2.16·10�3 3.33·10�5 5.21·10�5 64.9 63.9

4.74·10�23 2.16·10�3 3.33·10�5 5.21·10�5 64.9 63.9

4.56·10�13 2.02·10�3 3.33·10�5 5.21·10�5 61.2 63.9

8.35·10�5 7.23·10�2 5.24·10�4 7.69·10�4 138.0 <1



Table 18

Results for different values of r for m=1, k=10, L1=5p/4, L2=3p/2, p=4, O(h6) with c=0

r Estimate (17) err n=32 err n=64 err n=128 err32/err64 err64/err128

10 8.77·10�2 9.54·10�2 9.23·10�2 9.16·10�2 1.0 1.0

20 3.85·10�3 4.59·10�3 3.94·10�3 3.88·10�3 1.2 1.0

40 7.43·10�6 2.03·10�3 3.39·10�5 7.43·10�6 59.8 4.6

80 2.75·10�11 3.24·10�3 3.34·10�5 5.21·10�7 97 64.1

160 3.81·10�22 9.28·10�3 3.35·10�5 5.21·10�7 277 64.3

320 7.25·10�44 1.20·10�2 3.42·10�5 5.30·10�7 350 64.5

103 1.31·10�136 3.63·10�2 4.21·10�5 5.89·10�7 86.6 71.5

Table 19

Error varying g in Sx=1+(rx/(g+ik)), L1=5p/4, L2=7p/4, m=6, k=8, 32 points, r=25

g �10 �6 �4 �3 �1 0

err 2.73·10�3 6.75·10�4 6.66·10�4 6.70·10�4 6.81·10�4 6.8610�4

g 1 3 4 5 6 10

err 6.87·10�4 6.83·10�4 6.76·10�4 6.68·10�4 6.72·10�4 2.72·10�3
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If we know the minimal value of h a priori (in Tables 11–15 it is p/64), we can set n_pml and r to satisfy a

desired estimate for 2e�2h�n pml�r
ffiffiffiffiffiffi
1�e

p
=ðpþ1Þ. Hence, when we refine the interior grid to increase the accuracy we

also need more points in the PML.

As m and k get closer we approach the evanescent limit and the PML is less effective. The error is shown

in Table 16.

8.2.3.4. Value of p. We solve the test problem with various values of p (Table 17) with
m ¼ 1; k ¼ 10; L1 ¼
5p
4
; L2 ¼

7p
4
; r ¼ 100; Oðh6Þ scheme with c ¼ 0:
We clearly see the bad behavior of the case p=1 and the need for sufficient derivatives in Sx as seen in Figs.

8–11. In the O(h6) case we should choose p P 4. Moreover, we do not benefit from taking larger values of p

than four.

8.2.3.5. Value of r. Taking as a test problem with various values of r,
m ¼ 1; k ¼ 10; L1 ¼
5p
4
; L2 ¼

3p
2
; p ¼ 4; Oðh6Þ scheme with c ¼ 0:
We present the results in Table 18. We conclude that the value of r does not influence the accuracy of the

approximation as long as 2e�2r
ffiffiffiffiffiffi
1�e

p
ðL2�L1Þ=ðpþ1Þ is small enough. Thus, a natural choice of r should be r>k

such that
2e�
2r
ffiffiffiffi
1�e

p
ðL2�L1Þ

pþ1 
 10�q;
where q is the number of the desired significant digits accuracy. We choose the smallest r that satisfies this.

We next consider a more general formula for Sx given by Sx=1+(rx/(g+ik)). The original formula cor-

responds to g=0. In Table 19 we present the error as a function of g. We consider L1=5p/4, L2=7p/4,
m=6, k=8 with 32 points and r=25. We see that indeed the smallest error occurs for g=�5.0. However,

the differences are so small that there is no practical purpose in trying to choose a non-zero g. Hence, we

continue to use the original g=0.
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9. Iterative techniques

For very fine meshes in two dimensions and coarser meshes in three dimensions an LU decomposition

becomes very expensive. Hence, we consider the use of an iterative solver, e.g. [2]. We examine Krylov sub-

spaces methods such as CGNR, GMRES, QMR and BiCG on the combined problem and found that they
converge to the solution very slowly. Hence, we need to use a preconditioner for the problem. A precon-

ditioner for the pure Helmholtz equation was constructed in [3]. The preconditioner was based on the in-

verse of the Laplacian operator computed with one sweep of SSOR.

The major difficulty of this preconditioner on the combined problem is that the PML introduces a

different equation. k=0 in the PML does not give the Laplace equation. Instead, we construct a precondi-

tioner, that will act as the inverse Laplacian operator in the interior, and behave as an approximate inverse

in the PML. We do not calculate M�1 but we approximate the solution of My=z, by applying a few sweeps

of SSOR or damped Jacobi (DJ). In the PML we cannot choose k=0 because of the definition of Sx. For
the Helmholtz equation with small but non-zero k the operator is still positive definite. Thus, to apply the

preconditioner M we use the standard approximation of the combined problem with a small value of k

which we denote ~k.
Table

Numb

combin

n

16

32

64

Table

Numb

n

16

32

64
aDxðAuxÞjþ
1� a
2

ðDxðAuxÞjþ1þDxðAuxÞj�1Þþ aDyðBuyÞiþ
1� a
2

ðDyðAuyÞiþ1 þDyðAuyÞi�1Þ

þ ð1� 4bs� 4bcÞCi;jui;jþbs

Ciþ1;juiþ1;jþCi�1;jui�1;j

þCi;jþ1ui;jþ1 þCi;j�1ui;j�1

� �
þbs

Ciþ1;jþ1uiþ1;jþ1þCi�1;jþ1ui�1;jþ1

þCiþ1;j�1uiþ1;j�1þCi�1;j�1ui�1;j�1

� �
;

where A=1/Sx, B=Sx, C ¼ ~k
2
Sx. The resulting matrix M̂ is complex and cannot be applied as a precondi-

tioner for two reasons. It is not symmetric and it is not real and positive definite. It does have these two

properties in the interior, but not in the PML.

To overcome these two difficulties we set the PT values: a=1, bs=bc=0 in the preconditioner. This

choice makes the approximation complex-symmetric. It is also useful because it involves only 5 unknowns

in each equation instead of 9. To change the matrix to a real symmetric positive definite matrix we make the

change:
Mi;j ¼
j M̂ i;j j; i ¼ j;

� j M̂ i;j j; i 6¼ j

(
for every 16 i; j6N :
20

er of iterations in the left preconditioned CGNR with diagonal scaling using 4 sweeps of DJ with x=0.7 applied on the

ed preconditioner with ~k ¼ 0:1

~r ¼ 10; ~p ¼ 1 ~r ¼ 10; ~p ¼ 2 ~r ¼ 1; ~p ¼ 4 ~r ¼ 10; ~p ¼ 4 ~r ¼ 100; ~p ¼ 4 ~r ¼ 10; ~p ¼ 6

211 206 208 200 204 204

832 811 927 807 807 871

4022 3911 4683 3766 3857 4421

21

er of iterations non-preconditioned CGNR with and without diagonal scaling

With diagonal scaling Without diagonal scaling

351 877

1732 12,823

8646 116,744
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In the interiorMi;j ¼ M̂i;j. Because ~k is small in the interior, the approximation is a small perturbation of the

Laplacian. We call this preconditioner the combined preconditioner. Note, that as in the pure Laplacian

operator preconditioner, this preconditioner corresponds to a second order accurate operator even when

the scheme in the interior is higher order accurate.

Table 20 shows the number of iterations for the CGNR preconditioned algorithm with the new com-
bined preconditioner. We choose ~k ¼ 0:1. The best value of p in the preconditioner is the same as used

for the approximation. ~r should be small, but not too small. The benefit of the preconditioner is demon-

strated comparing the convergence with that of the non-preconditioned algorithm in Table 21. As shown in

[3] as k gets larger the preconditioner is less effective. This can be improved as in [13].
10. Conclusions

We construct a PML for the two-dimensional Helmholtz equation in a strip. We prove that the com-

bined Helmholtz and PML layer has a unique solution and that this solution is a good approximation

to the interior Helmholtz equation. We find a bound for this error and show that one can control the error

by changing the PML parameters. We describe high-order finite differences schemes for the combined

Helmholtz PML equation and apply them on the strip problem. We analyze the numerical error governed

by the use of these schemes and show that for a proper choice of parameters, the combined scheme main-

tains the high-order accuracy of the interior approximation. A variety of numerical results is presented to

support the analysis.
We also investigate the use of iterative methods to solve the resultant linear equations. We develop a

preconditioner Krylov algorithms to solve the combined problem. We conclude that the parameters should

be chosen so that:

	 The length of the interior, L1, should be as small as the physical problem permits because it does not

influence the accuracy but has a significant impact on the size of the linear system.

	 The width of the PML, L2�L1, should be as thin as possible to decrease the size of the linear system.

Numerical tests show that we cannot make the layer too thin relative to the interior grid. For the interior

grids used in this study we could use 16 grid points in the PML and still get high order accuracy. If the
grid is refined than one needs more points in the PML.

	 The degree of the polynomial in the PML, p (see (14)) should be 2 for the fourth order accurate scheme

and 4 for the sixth order accurate scheme.

	 r, the maximum of rx(x) (see (14)) should be set to the lowest value which maintains the desired accuracy

determined by e�2r
ffiffiffiffiffiffi
1�e

p
ðL2�L1Þ=ðpþ1Þ (see (17)).

	 If both traveling and evanescent waves are present then the size of the PML should be chosen to damp

the evanescent waves. Then the other parameters are chosen to efficiently damp the traveling waves. The

difficult situation is traveling waves near resonance.
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